Search results
Results From The WOW.Com Content Network
Spray transfer GMAW. Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse (melt and join).
Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used to determine the welding process and to compare the final weld quality to other materials. Weldability is often hard to define quantitatively, so most standards define it qualitatively.
This is a list of welding processes, separated into their respective categories. The associated N reference numbers (second column) are specified in ISO 4063 (in the European Union published as EN ISO 4063 ). [ 1 ]
Shielding gases are inert or semi-inert gases that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding (GMAW and GTAW, more popularly known as MIG (Metal Inert Gas) and TIG (Tungsten Inert Gas), respectively). Their purpose is to protect the weld area from oxygen, and water vapour ...
Diver-welders and welding operators for hyperbaric dry welding ISO 17635: Non-destructive testing of welds. General rules for metallic materials ISO 17660-1: Welding - Welding of reinforcing steel - Part 1: Load-bearing welded joints ISO 17660-2: Welding - Welding of reinforcing steel - Part 1: Non-load bearing welded joints ISO/TR 20172
Gas metal arc welding (GMAW), also known as metal inert gas or MIG welding, is a semi-automatic or automatic process that uses a continuous wire feed as an electrode and an inert or semi-inert gas mixture to protect the weld from contamination. Since the electrode is continuous, welding speeds are greater for GMAW than for SMAW.
Weld mapping is the process of assigning information to a weld repair or joint to enable easy identification of weld processes, production (welders, their qualifications, date welded), quality (visual inspection, NDT, standards and specifications) and traceability (tracking weld joints and welded castings, the origin of weld materials).
The symbolic representation of a V weld of chamfered plates in a technical drawing. The symbols and conventions used in welding documentation are specified in national and international standards such as ISO 2553 Welded, brazed and soldered joints -- Symbolic representation on drawings and ISO 4063 Welding and allied processes -- Nomenclature of processes and reference numbers.