Search results
Results From The WOW.Com Content Network
A cyclic model (or oscillating model) is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a Big Bang and ending with a Big Crunch; in the interim, the ...
“We're talking about a process by which the universe would completely change its structure,” said Zlatko Papic, from the University of Leeds, the lead author on the new paper, in a statement.
The theory explains that the universe will expand until all matter decays and ultimately turns to light. Since nothing in the universe would have any time or distance scale associated with it, the universe becomes identical with the Big Bang, resulting in a type of Big Crunch that becomes the next Big Bang, thus perpetuating the next cycle. [21]
The scale factor is dimensionless, with counted from the birth of the universe and set to the present age of the universe: 13.799 ± 0.021 Gyr [4] giving the current value of as () or . The evolution of the scale factor is a dynamical question, determined by the equations of general relativity , which are presented in the case of a locally ...
[34] [35] It became known in the 1960s that the density of matter in the Universe was comparable to the critical density necessary for a flat universe (that is, a universe whose large-scale geometry is the usual Euclidean geometry, rather than a non-Euclidean hyperbolic or spherical geometry).
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.
In this scenario, the universe spends the vast majority of eternity in a featureless state of heat death; however, over enough eons, eventually a very rare thermal fluctuation will occur where atoms bounce off each other in exactly such a way as to form a substructure equivalent to our entire observable universe. Boltzmann argues that, while ...
The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [7] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3% (2018 estimate) of the mass–energy density ...