Search results
Results From The WOW.Com Content Network
Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. [ 1 ] [ 2 ] For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred.
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices , including transistors . [ 1 ] MBE is used to make diodes and MOSFETs (MOS field-effect transistors ) at microwave frequencies, and to manufacture the lasers used to read optical discs ...
Hydride vapour-phase epitaxy (HVPE) is an epitaxial growth technique often employed to produce semiconductors such as GaN, GaAs, InP and their related compounds, in which hydrogen chloride is reacted at elevated temperature with the group-III metals to produce gaseous metal chlorides, which then react with ammonia to produce the group-III nitrides.
Chemical beam epitaxy was first demonstrated by W.T. Tsang in 1984. [1] This technique was then described as a hybrid of metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) that exploited the advantages of both the techniques. In this initial work, InP and GaAs were grown using gaseous group III and V alkyls.
Illustration of the process. Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), [1] is a chemical vapour deposition method used to produce single- or polycrystalline thin films.
Selective area epitaxy is the local growth of epitaxial layer through a patterned amorphous dielectric mask (typically SiO 2 or Si 3 N 4) deposited on a semiconductor substrate. Semiconductor growth conditions are selected to ensure epitaxial growth on the exposed substrate, but not on the dielectric mask. [ 1 ]
Silicon epi wafers were first developed around 1966 and achieved commercial acceptance by the early 1980s. [6] Methods for growing the epitaxial layer on monocrystalline silicon or other wafers include: various types of chemical vapor deposition (CVD) classified as Atmospheric pressure CVD (APCVD) or metal organic chemical vapor deposition (MOCVD), as well as molecular beam epitaxy (MBE). [7]
Thermal laser epitaxy (TLE) is a physical vapor deposition technique that utilizes irradiation from continuous-wave lasers to heat sources locally for growing films on a substrate. [ 1 ] [ 2 ] This technique can be performed under ultra-high vacuum pressure or in the presence of a background atmosphere, such as ozone , to deposit oxide films.