Search results
Results From The WOW.Com Content Network
Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems.Population dynamics is a branch of mathematical biology, and uses mathematical techniques such as differential equations to model behaviour.
A fishery population is affected by three dynamic rate functions: Birth rate or recruitment. Recruitment means reaching a certain size or reproductive stage. With fisheries, recruitment usually refers to the age a fish can be caught and counted in nets. Growth rate. This measures the growth of individuals in size and length.
[1] [2] In aerodynamics notation, this quantity is denoted as or . When input to an airspeed indicator, impact pressure is used to provide a calibrated airspeed reading. An air data computer with inputs of pitot and static pressures is able to provide a Mach number and, if static temperature is known, true airspeed .
He applied the same mathematical formula to describe plant size over time. The equation for exponential mass growth rate in plant growth analysis is often expressed as: = Where: M(t) is the final mass of the plant at time (t). M 0 is the initial mass of the plant.
Theoretically, it is easy to calculate ecological efficiency using the mathematical relationships above. It is often difficult, however, to obtain accurate measurements of the values involved in the calculation. Assessing ingestion, for example, requires knowledge of the gross amount of food consumed in an ecosystem as well as its caloric ...
It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1] [2] = where f is the local Fanning friction factor (dimensionless); τ is the local shear stress (units of pascals (Pa) = kg/m 2, or pounds per square foot (psf) = lbm/ft 2);
Umbrella sampling is another free-energy calculation technique that is typically used for calculating the free-energy change associated with a change in "position" coordinates as opposed to "chemical" coordinates, although umbrella sampling can also be used for a chemical transformation when the "chemical" coordinate is treated as a dynamic ...
The first applications of computer simulations for dynamic systems was in the aerospace industry. [5] Commercial uses of dynamic simulation are many and range from nuclear power, steam turbines, 6 degrees of freedom vehicle modeling, electric motors, econometric models, biological systems, robot arms, mass-spring-damper systems, hydraulic systems, and drug dose migration through the human body ...