When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [ 1 ]

  4. Kernel - Wikipedia

    en.wikipedia.org/wiki/Kernel

    Kernel (statistics), a weighting function used in kernel density estimation to estimate the probability density function of a random variable; Integral kernel or kernel function, a function of two variables that defines an integral transform; Heat kernel, the fundamental solution to the heat equation on a specified domain; Convolution kernel

  5. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f). The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of f (which is a subring of S). (Note that rings need not be unital for the kernel definition).

  6. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    The kernel of a reproducing kernel Hilbert space is used in the suite of techniques known as kernel methods to perform tasks such as statistical classification, regression analysis, and cluster analysis on data in an implicit space. This usage is particularly common in machine learning.

  7. Transition kernel - Wikipedia

    en.wikipedia.org/wiki/Transition_kernel

    In the mathematics of probability, a transition kernel or kernel is a function in mathematics that has different applications. Kernels can for example be used to define random measures or stochastic processes. The most important example of kernels are the Markov kernels.

  8. Kernel (category theory) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(category_theory)

    In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if f : X → Y is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y. In symbols: ker(f) = eq(f, 0 XY) To be more explicit, the following universal property can be used.

  9. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification .