When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 24 February 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion ...

  3. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

  4. Energy conservation - Wikipedia

    en.wikipedia.org/wiki/Energy_conservation

    Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively (using less and better sources of energy for continuous service) or changing one's behavior to use less and better source of service (for example, by driving vehicles which consume renewable ...

  5. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first law of thermodynamics for closed systems was originally induced from empirically observed evidence, including calorimetric evidence. It is nowadays, however, taken to provide the definition of heat via the law of conservation of energy and the definition of work in terms of changes in the external parameters of a system.

  6. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  7. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    The energy released in a nuclear reaction can appear mainly in one of three ways: kinetic energy of the product particles (fraction of the kinetic energy of the charged nuclear reaction products can be directly converted into electrostatic energy); [5] emission of very high energy photons, called gamma rays;

  8. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    If the fission requires an input of energy, that comes from the kinetic energy of the neutron. An example of this kind of fission in a light element can occur when the stable isotope of lithium, lithium-7, is bombarded with fast neutrons and undergoes the following nuclear reaction: 7 3 Li + 1 0 n → 4 2 He + 3 1 H + 1 0 n + gamma rays ...

  9. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    As energy must be conserved, for pair production to occur, the incoming energy of the photon must be above a threshold of at least the total rest mass energy of the two particles created. (As the electron is the lightest, hence, lowest mass/energy, elementary particle, it requires the least energetic photons of all possible pair-production ...