Search results
Results From The WOW.Com Content Network
The lysosome is commonly referred to as the cell's recycling center because it processes unwanted material into substances that the cell can use. Lysosomes break down this unwanted matter by enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an ...
Reductive stress (RS) is defined as an abnormal accumulation of reducing equivalents despite being in the presence of intact oxidation and reduction systems. [1] A redox reaction involves the transfer of electrons from reducing agents (reductants) to oxidizing agents (oxidants) and redox couples are accountable for the majority of the cellular electron flow. [2]
The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. [1] It has been found to be conserved between mammalian species, [2] as well as yeast [1] [3] and worm organisms. The UPR is activated in response to an accumulation of unfolded or misfolded proteins in the lumen of the ...
Cellular stress response is the wide range of molecular changes that cells undergo in response to environmental stressors, including extremes of temperature, exposure to toxins, and mechanical damage. Cellular stress responses can also be caused by some viral infections. [1]
A related theory is that mutation, as distinct from DNA damage, is the primary cause of aging. A comparison of somatic mutation rate across several mammal species found that the total number of accumulated mutations at the end of lifespan was roughly equal across a broad range of lifespans. [ 49 ]
Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors. Cell damage can be reversible or irreversible.
As a result, a buildup of these substances occurs within lysosomes because they cannot be degraded, resulting in the characteristic I-cells, or "inclusion cells" seen microscopically. In addition, the defective lysosomal enzymes normally found only within lysosomes are instead found in high concentrations in the blood, but they remain inactive ...
Therefore, to modulate the activity of this autophagic pathway, the cell stringently regulates the levels of the CMA receptor at the lysosomal membrane by controlling the degradation rates of LAMP-2A monomers in lysosomes and by de novo synthesis of LAMP-2A molecules.