Ad
related to: chlorophyll f form and function
Search results
Results From The WOW.Com Content Network
The function of Chl f in photosynthetic reactions is uncertain and the ecological distribution of Chl f remains unknown. Chl f has been shown to support some of the roles in photosynthetic reactions, in both the energy transfer and in the charge separation processes. [4] [5] [6] Chl f is produced from chlorophyllide f by chlorophyll synthase.
Chlorophyll f was announced to be present in cyanobacteria and other oxygenic microorganisms that form stromatolites in 2010; [13] [14] a molecular formula of C 55 H 70 O 6 N 4 Mg and a structure of (2-formyl)-chlorophyll a were deduced based on NMR, optical and mass spectra. [15]
Other forms of chlorophyll exist, such as the accessory pigments chlorophyll b, chlorophyll c, chlorophyll d, [12] and chlorophyll f. Chlorophyll b is an olive green pigment found only in the chloroplasts of plants, green algae, any secondary chloroplasts obtained through the secondary endosymbiosis of a green alga, and a few cyanobacteria. [12]
Healthy plants are perceived as green because chlorophyll absorbs mainly the blue and red wavelengths but green light, reflected by plant structures like cell walls, is less absorbed. [2] The eleven conjugated double bonds that form the chromophore of the β-carotene molecule are highlighted in red.
This increases the surface area of the absorbing section and helps focus and concentrate light energy down into the reaction center to form chlorophyll. The energy transfer from excited electrons absorbed by pigments in the phycoerythrin subunits at the periphery of these antennas appears at the reaction center in less than 100 ps. [16]
One approach involves incorporating pigments like chlorophyll d and f, which are capable of absorbing far-red light, into the photosynthetic machinery of higher plants. [16] Naturally present in certain cyanobacteria, these chlorophylls enable photosynthesis with far-red light that standard chlorophylls a and b cannot utilize.
Chlorophyll a, b, and d. Chlorophyll synthase [14] completes the biosynthesis of chlorophyll a by catalysing the reaction EC 2.5.1.62. chlorophyllide a + phytyl diphosphate chlorophyll a + diphosphate. This forms an ester of the carboxylic acid group in chlorophyllide a with the 20-carbon diterpene alcohol phytol.
Bacteriochlorophylls c to f occur in the form of closely related homologs with different alkyl groups attached to pyrrole rings B and C and are illustrated above in their simplest versions, esterified with the sesquiterpene alcohol farnesol. [5] Most of the variation occurs in the 8 and 12 positions and can be attributed to methyltransferase ...