Search results
Results From The WOW.Com Content Network
Chlorophyll f (Chl f) is a type form of chlorophyll that absorbs further in the red (infrared light) than other chlorophylls.In 2010, it was reported by Min Chen to be present in stromatolites from Western Australia's Shark Bay.
Chlorophyll f was announced to be present in cyanobacteria and other oxygenic microorganisms that form stromatolites in 2010; [13] [14] a molecular formula of C 55 H 70 O 6 N 4 Mg and a structure of (2-formyl)-chlorophyll a were deduced based on NMR, optical and mass spectra. [15]
Other forms of chlorophyll exist, such as the accessory pigments chlorophyll b, chlorophyll c, chlorophyll d, [12] and chlorophyll f. Chlorophyll b is an olive green pigment found only in the chloroplasts of plants, green algae, any secondary chloroplasts obtained through the secondary endosymbiosis of a green alga, and a few cyanobacteria. [12]
Healthy plants are perceived as green because chlorophyll absorbs mainly the blue and red wavelengths but green light, reflected by plant structures like cell walls, is less absorbed. [2] The eleven conjugated double bonds that form the chromophore of the β-carotene molecule are highlighted in red.
Chlorophyll a contains a magnesium ion encased in a large ring structure known as a chlorin. The chlorin ring is a heterocyclic compound derived from pyrrole. Four nitrogen atoms from the chlorin surround and bind the magnesium atom. The magnesium center uniquely defines the structure as a chlorophyll molecule. [8]
Chlorophyll c refers to forms of chlorophyll found in certain marine algae, including the photosynthetic Chromista (e.g. diatoms and brown algae) and dinoflagellates. [1] [2] [3] These pigments are characterized by their unusual chemical structure, with a porphyrin as opposed to the chlorin (which has a reduced ring D) as the core; they also do not have an isoprenoid tail.
Liu et al. (2004) Crystal structure of spinach major light-harvesting complex at 2.72A° resolution. Nature 428: 287–292. Lokstein (1994)The role of light-harvesting complex II energy dissipation: an in-vivo fluorescence in excess excitation study on the origin of high-energy quenching. Journal of Photochemistry and Photobiology 26: 175-184
Chlorophyll a, b, and d. Chlorophyll synthase [14] completes the biosynthesis of chlorophyll a by catalysing the reaction EC 2.5.1.62. chlorophyllide a + phytyl diphosphate chlorophyll a + diphosphate. This forms an ester of the carboxylic acid group in chlorophyllide a with the 20-carbon diterpene alcohol phytol.