When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold.Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection.

  3. Gauge covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Gauge_covariant_derivative

    The covariant derivative in general relativity is a special example of the gauge covariant derivative. It corresponds to the Levi Civita connection (a special Riemannian connection ) on the tangent bundle (or the frame bundle ) i.e. it acts on tangent vector fields or more generally, tensors.

  4. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection (like any affine connection) also defines a derivative along curves, sometimes denoted by D. Given a smooth curve γ on (M, g) and a vector field V along γ its derivative is defined by = ˙ (). Formally, D is the pullback connection γ*∇ on the pullback bundle γ*TM.

  5. Exterior covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_covariant_derivative

    The covariant derivative is such a map for k = 0. The exterior covariant derivatives extends this map to general k. There are several equivalent ways to define this object: [3] Suppose that a vector-valued differential 2-form is regarded as assigning to each p a multilinear map s p: T p M × T p M → E p which is completely anti-symmetric.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The covariant derivatives (also called "tangential derivatives") of Tullio Levi-Civita and Gregorio Ricci-Curbastro provide a means of differentiating smooth tangential vector fields. Given a tangential vector field X and a tangent vector Y to S at p , the covariant derivative ∇ Y X is a certain tangent vector to S at p .

  7. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Contravariant vectors are often just called vectors and covariant vectors are called covectors or dual vectors. The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851. [3] [4] Curvilinear coordinate systems, such as cylindrical or spherical coordinates, are often used in physical and geometric problems ...

  8. Ehresmann connection - Wikipedia

    en.wikipedia.org/wiki/Ehresmann_connection

    The fact that the Ehresmann connection is linear implies that in addition it verifies for every function on the Leibniz rule, i.e. () = + (), and therefore is a covariant derivative of s. Conversely a covariant derivative ∇ on a vector bundle defines a linear Ehresmann connection by defining H e, for e ∈ E with x=π(e), to be the image ds x ...

  9. Second covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Second_covariant_derivative

    In the math branches of differential geometry and vector calculus, the second covariant derivative, or the second order covariant derivative, of a vector field is the derivative of its derivative with respect to another two tangent vector fields.