Search results
Results From The WOW.Com Content Network
The origin of the phrase "Lies, damned lies, and statistics" is unclear, but Mark Twain attributed it to Benjamin Disraeli [1] "Lies, damned lies, and statistics" is a phrase describing the persuasive power of statistics to bolster weak arguments, "one of the best, and best-known" critiques of applied statistics. [2]
Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...
Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator.
The book is a brief, breezy illustrated volume outlining the misuse of statistics and errors in the interpretation of statistics, and how errors create incorrect conclusions. In the 1960s and 1970s, it became a standard textbook introduction to the subject of statistics for many college students.
George Box. The phrase "all models are wrong" was first attributed to George Box in a 1976 paper published in the Journal of the American Statistical Association.In the paper, Box uses the phrase to refer to the limitations of models, arguing that while no model is ever completely accurate, simpler models can still provide valuable insights if applied judiciously. [1]
In statistics, it may involve basing broad conclusions regarding a statistical survey from a small sample group that fails to sufficiently represent an entire population. [ 1 ] [ 6 ] [ 7 ] Its opposite fallacy is called slothful induction , which consists of denying a reasonable conclusion of an inductive argument (e.g. "it was just a ...
In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.
Mathematician Richard Hamming expressed his view that "It is better to solve the right problem the wrong way than to solve the wrong problem the right way". Harvard economist Howard Raiffa describes an occasion when he, too, "fell into the trap of working on the wrong problem" (1968, pp. 264–265).