When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  3. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  4. Big Bang nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Big_Bang_nucleosynthesis

    Although the baryon per photon ratio is important in determining element abundances, the precise value makes little difference to the overall picture. Without major changes to the Big Bang theory itself, BBN will result in mass abundances of about 75% of hydrogen-1, about 25% helium-4 , about 0.01% of deuterium and helium-3 , trace amounts (on ...

  5. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  6. Type II supernova - Wikipedia

    en.wikipedia.org/wiki/Type_II_supernova

    Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing correspondingly shorter stellar life spans.

  7. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Nuclear fusion–fission hybrid (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s, and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to the delays in the ...

  8. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering, neutron capture, and nuclear fission, for some light nuclei (especially odd-odd nuclei) the most probable reaction with a thermal neutron is a transfer reaction:

  9. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun , [ 2 ] whereas the CNO cycle , the other known reaction, is suggested by theoretical models to dominate ...

  1. Related searches picture of nuclear fusion of the light elements of matter is known as quizlet

    what is nuclear fusionnuclear fusion wikipedia
    nuclear fusion of starsnuclear fusion reactions