Search results
Results From The WOW.Com Content Network
The left-hand side of this equation is a vector that has the same direction as the line CF, and the right-hand side has the same direction as the line AB. These lines have different directions since A, B, C are not collinear. It follows that the two members of the equation equal the zero vector, and
Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]
Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.
Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...
The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.
[1]: p. 23 From this, every straight line has a linear equation homogeneous in x, y, z. Every equation of the form + + = in real coefficients is a real straight line of finite points unless l : m : n is proportional to a : b : c, the side lengths, in which case we have the locus of points at infinity.
Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:
Given any line l, let P, Q, R be the feet of perpendiculars from the vertices A, B, C of triangle ABC to l. The lines through P. Q, R perpendicular respectively to the sides BC, CA, AB are concurrent and the point of concurrence is the orthopole of the line l with respect to the triangle ABC. In modern triangle geometry, there is a large body ...