When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  3. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,

  4. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    The Neuberg cubic passes through the following points: incenter, circumcenter, orthocenter, both Fermat points, both isodynamic points, the Euler infinity point, other triangle centers, the excenters, the reflections of A, B, C in the sidelines of ABC, and the vertices of the six equilateral triangles erected on the sides of ABC.

  5. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  6. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  7. Carnot's theorem (perpendiculars) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Carnot's theorem: if three perpendiculars on triangle sides intersect in a common point F, then blue area = red area. Carnot's theorem (named after Lazare Carnot) describes a necessary and sufficient condition for three lines that are perpendicular to the (extended) sides of a triangle having a common point of intersection.

  8. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    Given any line l, let P, Q, R be the feet of perpendiculars from the vertices A, B, C of triangle ABC to l. The lines through P. Q, R perpendicular respectively to the sides BC, CA, AB are concurrent and the point of concurrence is the orthopole of the line l with respect to the triangle ABC. In modern triangle geometry, there is a large body ...

  9. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  1. Related searches concurrent lines vs intersecting sides triangle formula equation practice

    examples of concurrent linesthree lines of a triangle
    triangles and parallel lines