Search results
Results From The WOW.Com Content Network
A neodymium magnet (also known as NdFeB, NIB or Neo magnet) is a permanent magnet made from an alloy of neodymium, iron, and boron to form the Nd 2 Fe 14 B tetragonal crystalline structure. [1] They are the most widely used type of rare-earth magnet. [2]
Neodymium alloys are used to make high-strength neodymium magnets, which are powerful permanent magnets. [11] These magnets are widely used in products like microphones, professional loudspeakers, in-ear headphones, high-performance hobby DC electric motors, and computer hard disks, where low magnet mass (or volume) or strong magnetic fields ...
The screw and magnet spin, with the screw tip acting as a bearing. A homopolar motor is a direct current electric motor with two magnetic poles, the conductors of which always cut unidirectional lines of magnetic flux by rotating a conductor around a fixed axis so that the conductor is at right angles to a static magnetic field.
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
Ferrofluid on glass, with a rare-earth magnet underneath. A rare-earth magnet is a strong permanent magnet made from alloys of rare-earth elements.Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets.
A permanent magnet motor is a type of electric motor that uses permanent magnets for the field excitation and a wound armature. The permanent magnets can either be stationary or rotating; interior or exterior to the armature for a radial flux machine or layered with the armature for an axial flux topology.
It has been widely used in industrial applications as permanent magnets and, because they can be powdered and formed easily, they are finding their applications into micro and nano-types systems such as biomarkers, bio diagnostics and biosensors. [34] Barium ferrite Ba Fe 12 O 19 (Ba O · 6 Fe 2 O 3), a common material for permanent magnet ...
The first machines to produce electric current from magnetism used permanent magnets; the dynamo machine, which used an electromagnet to produce the magnetic field, was developed later. The machine built by Hippolyte Pixii in 1832 used a rotating permanent magnet to induce alternating voltage in two fixed coils.