When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Intergranular fracture - Wikipedia

    en.wikipedia.org/wiki/Intergranular_fracture

    This is also known as intercrystalline fracture or grain-boundary separation. More rapid diffusion along grain boundaries than along grain interiors; Faster nucleation and growth of precipitates at the grain boundaries; Quench cracking, or crack growth following a quenching process, is another example of intergranular fracture and almost always ...

  3. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material.

  4. Transgranular fracture - Wikipedia

    en.wikipedia.org/wiki/Transgranular_fracture

    The fracture behavior of materials can be significantly changed by the use of precipitation-based grain boundary design. For example, Meindlhumer et. al. [9] produced a thin film of AlCrN containing a specific distribution of precipitates within the grain boundaries in precipitation-based grain boundary design. The precipitates acted as a ...

  5. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain

  6. Grain boundary sliding - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_sliding

    Grain boundary sliding (GBS) is a material deformation mechanism where grains slide against each other. This occurs in polycrystalline material under external stress at high homologous temperature (above ~0.4 [1]) and low strain rate and is intertwined with creep.

  7. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    To heal this, grain-boundary sliding occurs. The diffusional creep rate and the grain boundary sliding rate must be balanced if there are no voids or cracks remaining. When grain-boundary sliding can not accommodate the incompatibility, grain-boundary voids are generated, which is related to the initiation of creep fracture.

  8. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires much energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material.

  9. Aluminium–magnesium–silicon alloys - Wikipedia

    en.wikipedia.org/wiki/Aluminium–magnesium...

    Dispersions of AlMn bind oversaturated silicon during cooling after solution annealing. This improves crystallization and avoids excretion-free zones that otherwise arise at the grain boundaries. This improves the fracture behaviour from brittle to ductile and intragranular. [3]