Search results
Results From The WOW.Com Content Network
Univariate distribution is a dispersal type of a single random variable described either with a probability mass function (pmf) for discrete probability distribution, or probability density function (pdf) for continuous probability distribution. [14] It is not to be confused with multivariate distribution.
The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.
Wishart distribution; Multivariate Student-t distribution. The Inverse-Wishart distribution is important in Bayesian inference, for example in Bayesian multivariate linear regression. Additionally, Hotelling's T-squared distribution is a multivariate distribution, generalising Student's t-distribution, that is used in multivariate hypothesis ...
Graphs that are appropriate for bivariate analysis depend on the type of variable. For two continuous variables, a scatterplot is a common graph. When one variable is categorical and the other continuous, a box plot is common and when both are categorical a mosaic plot is common. These graphs are part of descriptive statistics.
Continuous uniform distribution. One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely. It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc.
Bivariate and multivariate distributions are usually represented as probabilistic graphical models (graphs), in which edges denote statistical dependencies (or conditional probabilities) and vertices denote variables. To learn the structure of a PGM from data linkage-learning is employed.
In statistics, a univariate distribution characterizes one variable, although it can be applied in other ways as well. For example, univariate data are composed of a single scalar component. In time series analysis, the whole time series is the "variable": a univariate time series is the series of values over time of a single quantity ...
Combined with bivariate copulas, regular vines have proven to be a flexible tool in high-dimensional dependence modeling. Copulas [2] [3] are multivariate distributions with uniform univariate margins. Representing a joint distribution as univariate margins plus copulas allows the separation of the problems of estimating univariate ...