Search results
Results From The WOW.Com Content Network
With n = 1, the slopes or first derivatives of the smoothstep are equal to zero at the left and right edge (x = 0 and x = 1), where the curve is appended to the constant or saturated levels. With higher integer n , the second and higher derivatives are zero at the edges, making the polynomial functions as flat as possible and the splice to the ...
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.
A cobweb plot, known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions, such as the logistic map.
These approximations are only valid near, but not at, the end point, and so the method differs from end point estimations by way of first- and second-derivative plots, which require data at the end point. Gran plots were originally devised for graphical determinations in pre-computer times, wherein an x-y plot on paper would be manually ...
To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.
The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function. Minitab, create an Empirical CDF; Mathwave, we can fit probability distribution to our data; Dataplot, we can plot Empirical CDF plot; Scipy, we can use scipy.stats.ecdf