When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Smoothstep - Wikipedia

    en.wikipedia.org/wiki/Smoothstep

    With n = 1, the slopes or first derivatives of the smoothstep are equal to zero at the left and right edge (x = 0 and x = 1), where the curve is appended to the constant or saturated levels. With higher integer n , the second and higher derivatives are zero at the edges, making the polynomial functions as flat as possible and the splice to the ...

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  4. Cobweb plot - Wikipedia

    en.wikipedia.org/wiki/Cobweb_plot

    A cobweb plot, known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions, such as the logistic map.

  5. Gran plot - Wikipedia

    en.wikipedia.org/wiki/Gran_plot

    These approximations are only valid near, but not at, the end point, and so the method differs from end point estimations by way of first- and second-derivative plots, which require data at the end point. Gran plots were originally devised for graphical determinations in pre-computer times, wherein an x-y plot on paper would be manually ...

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  7. Inverse demand function - Wikipedia

    en.wikipedia.org/wiki/Inverse_demand_function

    The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of the MR function is one-half the value of the demand function, and the slope of the MR function is twice that of the ...

  8. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  9. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function. Minitab, create an Empirical CDF; Mathwave, we can fit probability distribution to our data; Dataplot, we can plot Empirical CDF plot; Scipy, we can use scipy.stats.ecdf