When.com Web Search

  1. Ads

    related to: pauli matrices identities worksheet math 1 year

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Fierz identity - Wikipedia

    en.wikipedia.org/wiki/Fierz_identity

    The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.

  4. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Möbius–Kantor graph, the Cayley graph of the Pauli group with generators X, Y, and Z. In physics and mathematics, the Pauli group on 1 qubit is the 16-element matrix group consisting of the 2 × 2 identity matrix and all of the Pauli matrices

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j). A positive symmetric matrix. Matrix of ones: A matrix with all entries equal to one. a ij = 1. Pascal matrix: A matrix containing the entries of Pascal's triangle. Pauli matrices

  6. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    In general, a Grassmann algebra on n generators can be represented by 2 n × 2 n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2 n possible basis states ...

  7. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  8. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    Arbitrary Clifford group element can be generated as a circuit with no more than (/ ⁡ ()) gates. [6] [7] Here, reference [6] reports an 11-stage decomposition -H-C-P-C-P-C-H-P-C-P-C-, where H, C, and P stand for computational stages using Hadamard, CNOT, and Phase gates, respectively, and reference [7] shows that the CNOT stage can be implemented using (/ ⁡ ()) gates (stages -H- and -P ...

  9. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .