Ads
related to: pauli matrices identities worksheet math 1 yeareducation.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.
The Möbius–Kantor graph, the Cayley graph of the Pauli group with generators X, Y, and Z. In physics and mathematics, the Pauli group on 1 qubit is the 16-element matrix group consisting of the 2 × 2 identity matrix and all of the Pauli matrices
Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j). A positive symmetric matrix. Matrix of ones: A matrix with all entries equal to one. a ij = 1. Pascal matrix: A matrix containing the entries of Pascal's triangle. Pauli matrices
In general, a Grassmann algebra on n generators can be represented by 2 n × 2 n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2 n possible basis states ...
The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:
Arbitrary Clifford group element can be generated as a circuit with no more than (/ ()) gates. [6] [7] Here, reference [6] reports an 11-stage decomposition -H-C-P-C-P-C-H-P-C-P-C-, where H, C, and P stand for computational stages using Hadamard, CNOT, and Phase gates, respectively, and reference [7] shows that the CNOT stage can be implemented using (/ ()) gates (stages -H- and -P ...
The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .