Search results
Results From The WOW.Com Content Network
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
The conversion equations depend on the temperature at which the conversion is wanted (usually about 20 to 25 °C). At an ambient sea level atmospheric pressure of 1 atm (101.325 kPa or 1.01325 bar), the general equation is:
The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water.
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
inhaled carbon monoxide induces unconsciousness in 2–3 breaths and death in < 3 min (12 800 ppm) [15] 10 −3: mM 0.32–32 mM: normal range of hydronium ions in stomach acid (pH 1.5–3.5) [16] 5.5 mM: upper bound for healthy blood glucose when fasting [17] 7.8 mM: upper bound for healthy blood glucose 2 hours after eating [17] 10 −2: cM 20 mM
Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise. The substances are listed in alphabetical order. The substances are listed in alphabetical order.
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
The examples don't seem to be too accurate. A drop is usually defined as 0.05 ml, which then gives;. 1 drop in 50 ml = 1‰, 50ml is a very small cup 1 drop in 50 l = 1ppm 50 l is about 11 gallons, not 40 1 drop in 50 cubic metres = 1 ppb 1 drop = 1ppt, a 50 m swimming pool is 50*25*2 = 2,500 m^3 1 drop in 50,000,000 cubic metres = 1ppq, 50,000,000 m^3 is equivalent to a lake covering a square ...