Search results
Results From The WOW.Com Content Network
An example for an undirected Graph with a vertex r and its corresponding level structure For the concept in algebraic geometry, see level structure (algebraic geometry) In the mathematical subfield of graph theory a level structure of a rooted graph is a partition of the vertices into subsets that have the same distance from a given root vertex.
The simplicity of IBIS notation, and its focus on questions, makes it especially suited for representing conversations during the early exploratory phase of problem solving, when a problem is relatively ill-defined. [6]: 204 The basic structure of IBIS is a graph.
A graph with eight vertices, and a tree decomposition of it onto a tree with six nodes. Each graph edge connects two vertices that are listed together at some tree node, and each graph vertex is listed at the nodes of a contiguous subtree of the tree. Each tree node lists at most three vertices, so the width of this decomposition is two.
A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example, if a graph represents a road network, the weights could represent the length of each road.
An example of CSR representation of a directed graph. Pennant data structure for k=0 to k=3. An example of bag structure with 23 elements. There are some special data structures that parallel BFS can benefit from, such as CSR (Compressed Sparse Row), bag-structure, bitmap and so on.
There is no single definition of a level structure; rather, depending on the space X, one introduces the notion of a level structure. The classic one is that on an elliptic curve (see #Example: an abelian scheme). There is a level structure attached to a formal group called a Drinfeld level structure, introduced in (Drinfeld 1974). [3]
Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...