Search results
Results From The WOW.Com Content Network
But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the ...
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Enderton, for example, observes that "modus ponens can produce shorter formulas from longer ones", [9] and Russell observes that "the process of the inference cannot be reduced to symbols. Its sole record is the occurrence of ⊦q [the consequent] ... an inference is the dropping of a true premise; it is the dissolution of an implication". [10]
Conjunction introduction (often abbreviated simply as conjunction and also called and introduction or adjunction) [1] [2] [3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof .
The resolution rule is a single rule of inference that, together with unification, is sound and complete for first-order logic. As with the tableaux method, a formula is proved by showing that the negation of the formula is unsatisfiable.
The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument. The history of the inference rule modus tollens goes back to antiquity. [4] The first to explicitly describe the argument form modus tollens was Theophrastus. [5] Modus tollens is closely related to modus ponens.