Search results
Results From The WOW.Com Content Network
The shear stress at a point within a shaft is: = Note that the highest shear stress occurs on the surface of the shaft, where the radius is maximum. High stresses at the surface may be compounded by stress concentrations such as rough spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the maximum stress ...
This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
Maximum distortion energy theory (von Mises yield criterion) also referred to as octahedral shear stress theory. [4] – This theory proposes that the total strain energy can be separated into two components: the volumetric ( hydrostatic ) strain energy and the shape (distortion or shear ) strain energy.
Shear stress is the stress state caused by the combined energy of a pair of opposing forces acting along parallel lines of action through the material, in other words, the stress caused by faces of the material sliding relative to one another. An example is cutting paper with scissors [4] or stresses due to torsional loading.
Assuming that the direction of the forces is known, the stress across M can be expressed simply by the single number , calculated simply with the magnitude of those forces, F and the cross sectional area, A. = Unlike normal stress, this simple shear stress is directed parallel to the cross-section considered, rather than perpendicular to it. [13]
One may be able to determine a priori that, in some parts of the system, the stress will be of a certain type, such as uniaxial tension or compression, simple shear, isotropic compression or tension, torsion, bending, etc. In those parts, the stress field may then be represented by fewer than six numbers, and possibly just one.