Search results
Results From The WOW.Com Content Network
These diverticula make their appearance before the closure of the anterior end of the neural tube; [1] [2] after the closure of the tube around the 4th week of development, they are known as the optic vesicles. Previous studies of optic vesicles suggest that the surrounding extraocular tissues – the surface ectoderm and extraocular mesenchyme ...
First, there is an outpocketing of the neural tube called optic vesicles. Development of the optic vesicles starts in the 3-week embryo, from a progressively deepening groove in the neural plate called the optic sulcus. Some studies suggest this mechanism is regulated by RX/RAX transcription factor. [8]
The optical vesicle (which will eventually become the optic nerve, retina and iris) forms at the basal plate of the prosencephalon. The spinal cord forms from the lower part of the neural tube. The wall of the neural tube consists of neuroepithelial cells, which differentiate into neuroblasts, forming the mantle layer (the gray matter).
The lens placode under the direction of the optic vesicle gives rise to the lens of the eye. The adenohypophyseal placode , which forms the anterior lobe of the pituitary gland . Other animals
Pax6 is a transcription factor that is essential to the development of the lens placode. More specifically, it is needed for the surface ectoderm to fully develop. Pax6 has been identified as a necessary transcription factor for the thickness of the lens placode. [3] SOX2 is a transcription factor that works alongside Pax6 to develop the lens ...
Activity-dependent mechanisms influence neural circuit development and are crucial for laying out early connectivity maps and the continued refinement of synapses which occurs during development. [41] There are two distinct types of neural activity we observe in developing circuits -early spontaneous activity and sensory-evoked activity.
During embryonic development of the eye, the outer wall of the bulb of the optic vesicles becomes thickened and invaginated, and the bulb is thus converted into a cup, the optic cup (or ophthalmic cup), consisting of two strata of cells.
The optical vesicle (which eventually becomes the optic nerve, retina and iris) forms at the basal plate of the prosencephalon. The alar plate of the prosencephalon expands to form the cerebral hemispheres (the telencephalon) whilst its basal plate becomes the diencephalon. Finally, the optic vesicle grows to form an optic outgrowth.