Search results
Results From The WOW.Com Content Network
Else, recursively merge the first ⌊k/2⌋ lists and the final ⌈k/2⌉ lists, then binary merge these. When the input lists to this algorithm are ordered by length, shortest first, it requires fewer than n ⌈log k ⌉ comparisons, i.e., less than half the number used by the heap-based algorithm; in practice, it may be about as fast or slow ...
If the running time (number of comparisons) of merge sort for a list of length n is T(n), then the recurrence relation T(n) = 2T(n/2) + n follows from the definition of the algorithm (apply the algorithm to two lists of half the size of the original list, and add the n steps taken to merge the resulting two lists). [5]
It then merges each of the resulting lists of two into lists of four, then merges those lists of four, and so on; until at last two lists are merged into the final sorted list. [24] Of the algorithms described here, this is the first that scales well to very large lists, because its worst-case running time is O( n log n ).
The classic merge outputs the data item with the lowest key at each step; given some sorted lists, it produces a sorted list containing all the elements in any of the input lists, and it does so in time proportional to the sum of the lengths of the input lists. Denote by A[1..p] and B[1..q] two arrays sorted in increasing order.
The disadvantage of association lists is that the time to search is O(), where n is the length of the list. [3] For large lists, this may be much slower than the times that can be obtained by representing an associative array as a binary search tree or as a hash table.
In mathematics, an ordered pair, denoted (a, b), is a pair of objects in which their order is significant. The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes ...
Sorting a set of unlabelled weights by weight using only a balance scale requires a comparison sort algorithm. A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list.
The two most widespread approaches to this problem are separate chaining and open addressing. [3] [4] [5] [11] In separate chaining, the array does not store the value itself but stores a pointer to another container, usually an association list, that stores all the values matching the hash. By contrast, in open addressing, if a hash collision ...