Search results
Results From The WOW.Com Content Network
[1] Working fluids are often categorized on the basis of the shape of their T–s diagram. An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C).
The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.
The Otto Cycle is an example of a reversible thermodynamic cycle. 1→2: Isentropic / adiabatic expansion: Constant entropy (s), Decrease in pressure (P), Increase in volume (v), Decrease in temperature (T) 2→3: Isochoric cooling: Constant volume(v), Decrease in pressure (P), Decrease in entropy (S), Decrease in temperature (T)
At absolute zero temperature, the system is in the state with the minimum thermal energy, the ground state. The constant value (not necessarily zero) of entropy at this point is called the residual entropy of the system. With the exception of non-crystalline solids (e.g. glass) the residual entropy of a system is typically close to zero. [2]
An enthalpy–entropy chart, also known as the H–S chart or Mollier diagram, plots the total heat against entropy, [1] describing the enthalpy of a thermodynamic system. [2] A typical chart covers a pressure range of 0.01–1000 bar , and temperatures up to 800 degrees Celsius . [ 3 ]