Search results
Results From The WOW.Com Content Network
In computer programming and computer science, "maximal munch" or "longest match" is the principle that when creating some construct, as much of the available input as possible should be consumed. The earliest known use of this term is by R.G.G. Cattell in his PhD thesis [ 1 ] on automatic derivation of code generators for compilers .
In computer science, the Hunt–Szymanski algorithm, [1] [2] also known as Hunt–McIlroy algorithm, is a solution to the longest common subsequence problem.It was one of the first non-heuristic algorithms used in diff which compares a pair of files each represented as a sequence of lines.
The longest increasing subsequence has also been studied in the setting of online algorithms, in which the elements of a sequence of independent random variables with continuous distribution – or alternatively the elements of a random permutation – are presented one at a time to an algorithm that must decide whether to include or exclude ...
With that knowledge, everything after the "c" looks like the reflection of everything before the "c". The "a" after the "c" has the same longest palindrome as the "a" before the "c". Similarly, the "b" after the "c" has a longest palindrome that is at least the length of the longest palindrome centered on the "b" before the "c". There are some ...
ANSI/ISO Standard C++ C++, Standard C, C 1998 PureBasic: Frederic Laboureur, Fantaisie Software 1998 UnrealScript: Tim Sweeney at Epic Games: C++, Java: 1998 XSLT (+ XPath) W3C, James Clark: DSSSL: 1998 Xojo (REALbasic at the time) Xojo, Andrew Barry Visual Basic: 1999 C99: C99 ISO/IEC 9899:1999 C90: 1999 Gambas: Benoît Minisini: Visual Basic ...
Comparison of two revisions of an example file, based on their longest common subsequence (black) A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences).
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
Apply dynamic programming to this path decomposition to find a longest path in time (!), where is the number of vertices in the graph. Since the output path has length at least as large as d {\displaystyle d} , the running time is also bounded by O ( ℓ ! 2 ℓ n ) {\displaystyle O(\ell !2^{\ell }n)} , where ℓ {\displaystyle \ell } is the ...