Search results
Results From The WOW.Com Content Network
Some versions of the Copenhagen interpretation reject the idea that a wave function can be assigned to a physical system that meets the everyday definition of "cat"; in this view, the correct quantum-mechanical description of the cat-and-particle system must include a superselection rule.
The definition of quantum theorists' terms, such as wave function and matrix mechanics, progressed through many stages.For instance, Erwin Schrödinger originally viewed the electron's wave function as its charge density smeared across space, but Max Born reinterpreted the absolute square value of the wave function as the electron's probability density distributed across space; [3]: 24–33 ...
Niels Bohr never mentions wave function collapse in his published work, but he repeatedly cautioned that we must give up a "pictorial representation". Despite the differences between Bohr and Heisenberg, their views are often grouped together as the "Copenhagen interpretation", of which wave function collapse is regarded as a key feature. [19]
These interpretations are widely varying and sometimes somewhat abstract. For instance, the Copenhagen interpretation states that before a measurement, statements about a particle's properties are completely meaningless, while the many-worlds interpretation describes the existence of a multiverse made up of every possible universe. [53]
Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being relational, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint, [1] and
The Copenhagen interpretation of diffraction, especially in the viewpoint of Niels Bohr, puts weight on the doctrine of wave–particle duality. In this view, a particle that is diffracted by a diffractive object, such as for example a crystal, is regarded as really and physically behaving like a wave, split into components, more or less ...
In Bohm's interpretation, the (non-local) quantum potential constitutes an implicate (hidden) order which organizes a particle, and which may itself be the result of yet a further implicate order: a superimplicate order which organizes a field. [32] Nowadays Bohm's theory is considered to be one of many interpretations of quantum mechanics.
Popper's experiment of 1980 exploits couples of entangled particles, in order to put to the test Heisenberg's uncertainty principle. [6] [8]Indeed, Popper maintains: "I wish to suggest a crucial experiment to test whether knowledge alone is sufficient to create 'uncertainty' and, with it, scatter (as is contended under the Copenhagen interpretation), or whether it is the physical situation ...