Ad
related to: rotation matrix in algebra
Search results
Results From The WOW.Com Content Network
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the ...
While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix. An infinitesimal rotation matrix has the form
Thus, the determinant of a rotation orthogonal matrix must be 1. The only other possibility for the determinant of an orthogonal matrix is −1, and this result means the transformation is a hyperplane reflection, a point reflection (for odd n), or another kind of improper rotation. Matrices of all proper rotations form the special orthogonal ...
The elements of the rotation matrix are not all independent—as Euler's rotation theorem dictates, the rotation matrix has only three degrees of freedom. The rotation matrix has the following properties: A is a real, orthogonal matrix, hence each of its rows or columns represents a unit vector.
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
Johan Ernest Mebius (2005). "A matrix-based proof of the quaternion representation theorem for four-dimensional rotations". arXiv: math/0501249. Johan Ernest Mebius (2007). "Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations". arXiv: math/0701759.
The geometric interpretation of curl as rotation corresponds to identifying bivectors (2-vectors) in 3 dimensions with the special orthogonal Lie algebra of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and ...
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .