Ad
related to: calculating force on a lever in physics
Search results
Results From The WOW.Com Content Network
A lever is modeled as a rigid bar connected to a ground frame by a hinged joint called a fulcrum. The lever is operated by applying an input force F A at a point A located by the coordinate vector r A on the bar. The lever then exerts an output force F B at the point B located by r B.
The lever is a movable bar that pivots on a fulcrum attached to or positioned on or across a fixed point. The lever operates by applying forces at different distances from the fulcrum, or pivot. The location of the fulcrum determines a lever's class. Where a lever rotates continuously, it functions as a rotary second-class lever.
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. [ 23 ] : 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium .
A force applied perpendicularly to a lever multiplied by its distance from the lever's fulcrum (the length of the lever arm) is its torque. Therefore, torque is defined as the product of the magnitude of the perpendicular component of the force and the distance of the line of action of a force from the point around which it is being determined.
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
In many simple machines, if the load force on the machine is high enough in relation to the input force , the machine will move backwards, with the load force doing work on the input force. [29] So these machines can be used in either direction, with the driving force applied to either input point.
A lever arm uses the fulcrum to lift the load using and intensifying an applied force.In practice, conditions may prevent the use of a single lever to accomplish the desired result, [1] e.g., a restricted space, the inconvenient location of the point of delivery of the resultant force, or the prohibitive length of the lever arm needed.