Search results
Results From The WOW.Com Content Network
Early monociliated ependymal cells are differentiated to multiciliated ependymal cells for their function in circulating cerebrospinal fluid. [3] The basal membranes of these cells are characterized by tentacle-like extensions that attach to astrocytes. The apical side is covered in cilia and microvilli. [4]
This schematic illustrates the four different types of glial cells, all of which possess cytoplasmic processes: ependymal cells (light pink), astrocytes (green), microglia (red), and oligodendrocytes (light blue). Cell bodies of neurons are in yellow (Their axons are surrounded by myelin, produced by oligodendrocytes).
Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their function is to transfer chemical signals from the cerebrospinal fluid to the central nervous system.
Motile cilia are found in large numbers on respiratory epithelial cells – around 200 cilia per cell, where they function in mucociliary clearance, and also have mechanosensory and chemosensory functions. [12] [13] [14] Motile cilia on ependymal cells move the cerebrospinal fluid through the ventricular system of the brain.
The subependymal zone (SEZ) is a cell layer below the ependyma in the lateral ventricles of the brain. It is an adult version of the embryonic forebrain germinal zone.This region contains adult neural stem cells also called neuroepithelial cells which have the potential to generate new neurons and glial cells. [1]
[1] [2] The choroid plexus produces most of the cerebrospinal fluid of the central nervous system that circulates through the ventricles of the brain, the central canal of the spinal cord, and the subarachnoid space. [4] [2] The tela choroidea in the ventricles forms from different parts of the roof plate in the development of the embryo. [2] [1]
Mucociliary clearance (MCC), mucociliary transport, or the mucociliary escalator describes the self-clearing mechanism of the airways in the respiratory system. [1] It is one of the two protective processes for the lungs in removing inhaled particles including pathogens before they can reach the delicate tissue of the lungs.
The cells in the respiratory epithelium are of five main types: a) ciliated cells, b) goblet cells, c) brush cells, d) airway basal cells, and e) small granule cells (NDES) [6] Goblet cells become increasingly fewer further down the respiratory tree until they are absent in the terminal bronchioles; club cells take over their role to some extent here. [7]