When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter .

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.

  4. Inscribed figure - Wikipedia

    en.wikipedia.org/wiki/Inscribed_figure

    Not every polygon with more than three sides is an inscribed polygon of a circle; those polygons that are so inscribed are called cyclic polygons. Every triangle can be inscribed in an ellipse, called its Steiner circumellipse or simply its Steiner ellipse, whose center is the triangle's centroid. Every triangle has an infinitude of inscribed ...

  5. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center.

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  7. Bertrand paradox (probability) - Wikipedia

    en.wikipedia.org/wiki/Bertrand_paradox_(probability)

    The chord is longer than a side of the inscribed triangle if the chosen point falls within a concentric circle of radius ⁠ 1 / 2 ⁠ the radius of the larger circle. The area of the smaller circle is one fourth the area of the larger circle, therefore the probability a random chord is longer than a side of the inscribed triangle is ⁠ 1 / 4 ⁠.

  8. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The intersection points T 1 and T 2 of the circle C and the new circle are the tangent points for lines passing through P, by the following argument. The line segments OT 1 and OT 2 are radii of the circle C; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2, respectively. But only a tangent ...