Search results
Results From The WOW.Com Content Network
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave -like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.
The phase velocity varies with frequency. The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
A wave function for a single electron on 5d atomic orbital of a hydrogen atom. The solid body shows the places where the electron's probability density is above a certain value (here 0.02 nm −3): this is calculated from the probability amplitude. The hue on the colored surface shows the complex phase of the wave function.
In 1923, the French physicist Louis de Broglie put forward his theory of matter waves by stating that particles can exhibit wave characteristics and vice versa. Building on de Broglie's approach, modern quantum mechanics was born in 1925, when the German physicists Werner Heisenberg, Max Born, and Pascual Jordan [ 92 ] [ 93 ] developed matrix ...
Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of ...
The wave associated with a particle of a given mass, such as an atom, has a defined frequency, and a change in the duration of one cycle from peak to peak that is sometimes called its Compton periodicity. Such a matter wave has the characteristics of a simple clock, in that it marks out fixed and equal intervals of time.
Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [ 2 ] When the phase difference φ ( t ) {\displaystyle \varphi (t)} is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2 ), sinusoidal signals are sometimes said to be in quadrature , e.g., in-phase and quadrature components of a ...
In fact, the wave aspect of matter was formalized by a wavefunction defined by the Schrödinger equation, which is a pure mathematical entity having a probabilistic interpretation, without the support of real physical elements. This wavefunction gives an appearance of wave behavior to matter, without making real physical waves appear.