Ads
related to: fourier transform infrared spectroscopy uses and definition
Search results
Results From The WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is " FTIR Spectroscopy ", a common technique in chemistry. In general, the goal of absorption spectroscopy is to measure how well a sample absorbs or transmits light at each different wavelength.
The FTIR technique uses a polychromatic beam of light with a wide range of continuous frequencies simultaneously, and therefore allows a much higher speed of scanning versus the conventional monochromatic dispersive spectroscopy. [8] Without the slit used in dispersive spectroscopy, FTIR allows more light to enter the spectrometer and gives a ...
A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer. Two-dimensional IR is also possible as discussed below. The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near-, mid- and far-infrared, named for their relation to the visible spectrum.
Most modern infrared spectrometers can be converted to characterise samples via ATR by mounting the ATR accessory in the spectrometer's sample compartment. The accessibility, rapid sample turnaround and ease of use of ATR with Fourier transform infrared spectroscopy (FTIR) has led to substantial use by the scientific community.
Electron paramagnetic resonance spectroscopy; Force spectroscopy; Fourier-transform spectroscopy is an efficient method for processing spectra data obtained using interferometers. Fourier-transform infrared spectroscopy is a common implementation of infrared spectroscopy. NMR also employs Fourier transforms. Gamma spectroscopy
Deconvolution can be used to apparently improve spectral resolution. In the case of NMR spectra, the process is relatively straight forward, because the line shapes are Lorentzian, and the convolution of a Lorentzian with another Lorentzian is also Lorentzian. The Fourier transform of a Lorentzian is an exponential. In the co-domain (time) of ...
Both groups used a conventional Fourier transform infrared spectrometer (FTIR) equipped with a broadband thermal source, the radiation was focused near the tip of a probe that was in contact with a sample. The Lancaster group obtained spectra by detecting the absorption of infrared radiation using a temperature sensitive thermal probe.