Search results
Results From The WOW.Com Content Network
For example, an irrigation sprinkler system, programmed to turn on at set times could be an example of an open-loop system if it does not measure soil moisture as a form of feedback. Even if rain is pouring down on the lawn, the sprinkler system would activate on schedule, wasting water.
In open-loop control, the control action from the controller is independent of the "process output" (or "controlled process variable"). A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building.
The open-loop gain is a physical attribute of an operational amplifier that is often finite in comparison to the ideal gain. While open-loop gain is the gain when there is no feedback in a circuit, an operational amplifier will often be configured to use a feedback configuration such that its gain will be controlled by the feedback circuit components.
There are three types of control systems: open loop, feed-forward, and feedback. An example of a pure open loop control system is manual non-power-assisted steering of a motor car; the steering system does not have access to an auxiliary power source and does not respond to varying resistance to turning of the direction wheels; the driver must ...
Example of a single industrial control loop; showing continuously modulated control of process flow. A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical ...
Closed-loop controllers have the following advantages over open-loop controllers: disturbance rejection (such as hills in the cruise control example above) guaranteed performance even with model uncertainties, when the model structure does not match perfectly the real process and the model parameters are not exact
A prime example is when the amplifier's output is connected to a capacitive load. Therefore, operational amplifiers are usually compensated to achieve a minimum phase margin of 45° or so. This means that at the frequency at which the open and closed loop gains meet, the phase angle is −135°. The calculation is: -135° - (-180°) = 45°.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: