Search results
Results From The WOW.Com Content Network
In survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate of the control population.
This interpretation of the baseline hazard as "hazard of a baseline subject" is imperfect, as the covariate being 0 is impossible in this application: a P/E of 0 is meaningless (it means the company's stock price is 0, i.e., they are "dead"). A more appropriate interpretation would be "the hazard when all variables are nil".
It is recommended to use absolute measurements, such as risk difference, alongside the relative measurements, when presenting the results of randomized controlled trials. [4]
If the hazard ratio is , there are total subjects, is the probability a subject in either group will eventually have an event (so that is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean () and variance 1. [4]
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
This approach performs well for certain measures and can approximate arbitrary hazard functions relatively well, while not imposing stringent computational requirements. [5] When the covariates are omitted from the analysis, the maximum likelihood boils down to the Kaplan-Meier estimator of the survivor function. [6]
Because of this interpretation, AF p is considered useful for guiding public health policy. [ 6 ] For example, in 1953 Levin's paper estimated that lung cancer has a relative risk of 3.6–13.4 in smokers compared to non-smokers, and that the proportion of the population exposed to smoking was 0.5–0.96, resulting in the high AF p value of 0. ...
A concept closely-related but different [2] to instantaneous failure rate () is the hazard rate (or hazard function), (). In the many-system case, this is defined as the proportional failure rate of the systems still functioning at time t {\displaystyle t} (as opposed to f ( t ) {\displaystyle f(t)} , which is the expressed as a proportion of ...