Search results
Results From The WOW.Com Content Network
Tollens' test for aldehyde: left side positive (silver mirror), right side negative Ball-and-stick model of the diamminesilver(I) complex. Tollens' reagent (chemical formula ()) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes.
The Birch reduction is an organic reaction that is used to convert arenes to 1,4-cyclohexadienes.The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent (traditionally liquid ammonia) with an alkali metal (traditionally sodium) and a proton source (traditionally an alcohol).
Formic acid: the simplest carboxylic acid; often used as a source of the hydride ion Grignard reagents: the most common application is for alkylation of aldehydes and ketones: [4] Hexamethylphosphoramide: a phosphoramide; useful polar aprotic solvent and additive in organic synthesis Hydrazine
Another common example is the reaction of a primary amine or secondary amine with a carboxylic acid or with a carboxylic acid derivative to form an amide. This reaction is widely used, especially in the synthesis of peptides. On the simple addition of an amine to a carboxylic acid, a salt of the organic acid and base is obtained.
The Mannich reaction starts with the nucleophilic addition of an amine to a carbonyl group followed by dehydration to the Schiff base. The Schiff base is an electrophile which reacts in a second step in an electrophilic addition with an enol formed from a carbonyl compound containing an acidic alpha-proton.
Carboxylation is a chemical reaction in which a carboxylic acid is produced by treating a substrate with carbon dioxide. [1] The opposite reaction is decarboxylation.In chemistry, the term carbonation is sometimes used synonymously with carboxylation, especially when applied to the reaction of carbanionic reagents with CO 2.
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.
It is the precursor to nitric acid, which is the source for most N-substituted aromatic compounds. Amines can be formed by the reaction of ammonia with alkyl halides or, more commonly, with alcohols: CH 3 OH + NH 3 → CH 3 NH 2 + H 2 O. Its ring-opening reaction with ethylene oxide give ethanolamine, diethanolamine, and triethanolamine.