When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The number of different states corresponding to a particular energy level is known as the degree of degeneracy (or simply the degeneracy) of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue .

  3. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    Computed energy level spectrum of hydrogen as a function of the electric field near n = 15 for magnetic quantum number m = 0. Each n level consists of n − 1 degenerate sublevels; application of an electric field breaks the degeneracy. Energy levels can cross due to underlying symmetries of motion in the Coulomb potential.

  4. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    A degenerate mass whose fermions have velocities close to the speed of light (particle kinetic energy larger than its rest mass energy) is called relativistic degenerate matter. The concept of degenerate stars , stellar objects composed of degenerate matter, was originally developed in a joint effort between Arthur Eddington , Ralph Fowler and ...

  5. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    Since the perturbation is weak, the energy levels and eigenstates should not deviate too much from their unperturbed values, and the terms should rapidly become smaller as the order is increased. Substituting the power series expansion into the Schrödinger equation produces:

  6. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  7. Energy level splitting - Wikipedia

    en.wikipedia.org/wiki/Energy_level_splitting

    In quantum physics, energy level splitting or a split in an energy level of a quantum system occurs when a perturbation changes the system. The perturbation changes the corresponding Hamiltonian and the outcome is change in eigenvalues ; several distinct energy levels emerge in place of the former degenerate (multi- state ) level.

  8. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  9. Quantum defect - Wikipedia

    en.wikipedia.org/wiki/Quantum_defect

    The energy difference is lost to heat, which may carry away the excess entropy delivered by the multimode incoherent pump. The quantum defect of a laser can be defined as the part of the energy of the pumping photon which is lost (not turned into photons at the lasing wavelength) in the gain medium during lasing . [ 1 ]