Search results
Results From The WOW.Com Content Network
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...
This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...
Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.
The expression "mathematical proof" is used by lay people to refer to using mathematical methods or arguing with mathematical objects, such as numbers, to demonstrate something about everyday life, or when data used in an argument is numerical. It is sometimes also used to mean a "statistical proof" (below), especially when used to argue from data.
The use of this fact forms the basis of a proof technique called proof by contradiction, which mathematicians use extensively to establish the validity of a wide range of theorems. This applies only in a logic where the law of excluded middle A ∨ ¬ A {\displaystyle A\vee \neg A} is accepted as an axiom.
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion [a] [b] is the law according to which any statement can be proven from a contradiction. [1] [2] [3] That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. [4] [5]
In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction.
Cantor's theorem and its proof are closely related to two paradoxes of set theory. Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important ...