Search results
Results From The WOW.Com Content Network
The RSA problem is defined as the task of taking e th roots modulo a composite n: recovering a value m such that c ≡ m e (mod n), where (n, e) is an RSA public key, and c is an RSA ciphertext. Currently the most promising approach to solving the RSA problem is to factor the modulus n .
In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories.It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography.
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
PKCS Standards Summary; Version Name Comments PKCS #1: 2.2: RSA Cryptography Standard [1]: See RFC 8017. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
RSA (Rivest–Shamir–Adleman) is another notable public-key cryptosystem. Created in 1978, it is still used today for applications involving digital signatures. [17] Using number theory, the RSA algorithm selects two prime numbers, which help generate both the encryption and decryption keys. [18]
It defines the Digital Signature Algorithm, contains a definition of RSA signatures based on the definitions contained within PKCS #1 version 2.1 and in American National Standard X9.31 with some additional requirements, and contains a definition of the Elliptic Curve Digital Signature Algorithm based on the definition provided by American ...
Deterministic encryption can leak information to an eavesdropper, who may recognize known ciphertexts. For example, when an adversary learns that a given ciphertext corresponds to some interesting message, they can learn something every time that ciphertext is transmitted.