When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The resting membrane potential is not an equilibrium potential as it relies on the constant expenditure of energy (for ionic pumps as mentioned above) for its maintenance. It is a dynamic diffusion potential that takes this mechanism into account—wholly unlike the pillows equilibrium potential, which is true no matter the nature of the system ...

  3. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  4. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    A neuron's resting membrane potential actually changes during the development of an organism. In order for a neuron to eventually adopt its full adult function, its potential must be tightly regulated during development. As an organism progresses through development the resting membrane potential becomes more negative. [24]

  5. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    The resting membrane potential is usually around –70 mV. The typical neuron has a threshold potential ranging from –40 mV to –55 mV. Temporal summation occurs when graded potentials within the postsynaptic cell occur so rapidly that they build on each other before the previous ones fade.

  6. Postsynaptic potential - Wikipedia

    en.wikipedia.org/wiki/Postsynaptic_potential

    When a membrane is at its equilibrium potential, there is no longer a net movement of ions. [4] Neurons have a resting potential of about −70 mV. When a neurotransmitter binds to a postsynaptic receptor, this can lead to the opening or closing of ion channels, allowing ions to flow inside or outside of the cell, changing the membrane potential.

  7. Goldman–Hodgkin–Katz flux equation - Wikipedia

    en.wikipedia.org/wiki/Goldman–Hodgkin–Katz...

    The membrane is a homogeneous substance; The electrical field is constant so that the transmembrane potential varies linearly across the membrane; The ions access the membrane instantaneously from the intra- and extracellular solutions; The permeant ions do not interact; The movement of ions is affected by both concentration and voltage differences

  8. Ventricular action potential - Wikipedia

    en.wikipedia.org/wiki/Ventricular_action_potential

    Phase 4: Resting membrane potential remains stable at ≈−90 mV. [1] Phase 0: Rapid depolarisation, shifting the voltage to positive. Specialised membrane proteins (voltage-gated sodium channels) in the cell membrane selectively allow sodium ions to enter the cell. This causes the membrane potential to rise at a rate of about 300 V/s.

  9. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Plasma membranes exhibit electrochemical polarity through establishment and maintenance of a resting membrane potential. Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), and chloride (Cl − ) to establish and maintain this polarity.