When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    Not deterred by this prediction, Stark undertook measurements [3] on excited states of the hydrogen atom and succeeded in observing splittings. By the use of the Bohr–Sommerfeld ("old") quantum theory , Paul Epstein [ 4 ] and Karl Schwarzschild [ 5 ] were independently able to derive equations for the linear and quadratic Stark effect in ...

  3. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy (or simply the degeneracy) of the level.

  4. Spin isomers of hydrogen - Wikipedia

    en.wikipedia.org/wiki/Spin_isomers_of_hydrogen

    The ortho and para forms of water have recently been isolated. Para water was found to be 25% more reactive for a proton-transfer reaction. [28] [29] Molecular oxygen (O 2) also exists in three lower-energy triplet states and one singlet state, as ground-state paramagnetic triplet oxygen and energized highly reactive diamagnetic singlet oxygen.

  5. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state. In contrast, the first and second excited states of dioxygen are both states of singlet oxygen. Each has two electrons of ...

  6. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.

  7. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  8. Zero field splitting - Wikipedia

    en.wikipedia.org/wiki/Zero_field_splitting

    In quantum mechanics terminology, the degeneracy is said to be "lifted" by the presence of the magnetic field. In the presence of more than one unpaired electron, the electrons mutually interact to give rise to two or more energy states. Zero field splitting refers to this lifting of degeneracy even in the absence of a magnetic field.

  9. Rotational partition function - Wikipedia

    en.wikipedia.org/wiki/Rotational_partition_function

    Rotational energies are quantized. For a diatomic molecule like CO or HCl, or a linear polyatomic molecule like OCS in its ground vibrational state, the allowed rotational energies in the rigid rotor approximation are = = (+) = (+). J is the quantum number for total rotational angular momentum and takes all integer values starting at zero, i.e., =,,, …, = is the rotational constant, and is ...