Search results
Results From The WOW.Com Content Network
However some authors use the term for the other common type of partial order relations, the irreflexive partial order relations, also called strict partial orders. Strict and non-strict partial orders can be put into a one-to-one correspondence , so for every strict partial order there is a unique corresponding non-strict partial order, and ...
In mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, I 1, being considered less than another, I 2, if I 1 is completely to the left of I 2.
The function f(x) = x 2 − 4 has two fixed points, shown as the intersection with the blue line; its least one is at 1/2 − √ 17 /2.. In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set ("poset" for short) to itself is the fixed point which is less than each other fixed point, according ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Indeed, one of the best studied classes among these are the interval orders, [8] which represent the partial order in terms of what might be called disjoint precedence of intervals on the real line: each element x of the poset is represented by an interval [x 1, x 2], such that for any y and z in the poset, y is below z if and only if y 2 < z 1.
Total order A relation that is reflexive, antisymmetric, transitive and connected. [20] Strict total order A relation that is irreflexive, asymmetric, transitive and connected. Uniqueness properties: One-to-one [d] Injective and functional. For example, the green relation in the diagram is one-to-one, but the red, blue and black ones are not ...
However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...
One easily sees that this yields a partial order. For example neither 3 divides 13 nor 13 divides 3, so 3 and 13 are not comparable elements of the divisibility relation on the set of integers. The identity relation = on any set is also a partial order in which every two distinct elements are incomparable.