When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  4. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Fermat's last theorem Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is ...

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Joseph-Louis Lagrange (1736–1813) was the first to give full proofs of some of Fermat's and Euler's work and observations—for instance, the four-square theorem and the basic theory of the misnamed "Pell's equation" (for which an algorithmic solution was found by Fermat and his contemporaries, and also by Jayadeva and Bhaskara II before them.)

  6. Wiles's proof of Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's...

    Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Fenchel–Moreau theorem (mathematical analysis) Fermat's Last Theorem (number theory) Fermat's little theorem (number theory) Fermat's theorem on sums of two squares (number theory) Fermat's theorem (stationary points) (real analysis) Fermat polygonal number theorem (number theory) Fernique's theorem (measure theory)

  8. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    Fermat's Last Theorem was conjectured by Pierre de Fermat in the 1600s, states the impossibility of finding solutions in positive integers for the equation + = with >. Fermat himself gave a proof for the n = 4 case using his technique of infinite descent , and other special cases were subsequently proved, but the general case was not proven ...

  9. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...