Search results
Results From The WOW.Com Content Network
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full.
These numbers have been proved prime by computer with a primality test for their form, for example the Lucas–Lehmer primality test for Mersenne numbers. “!” is the factorial, “#” is the primorial, and () is the third cyclotomic polynomial, defined as + +.
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
Prime number, prime power. Bonse's inequality; Prime factor. Table of prime factors; Formula for primes; Factorization. RSA number; Fundamental theorem of arithmetic; Square-free. Square-free integer; Square-free polynomial; Square number; Power of two; Integer-valued polynomial
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.