Search results
Results From The WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
Influences of selected glass component additions on the bulk modulus of a specific base glass. [6] A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~ 3500 bar) (assumed constant or weakly pressure dependent bulk modulus).
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
Bulk modulus: Ratio of pressure to volumetric compression (GPa) or ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume; Coefficient of restitution: The ratio of the final to initial relative velocity between two objects after they collide. Range: 0–1, 1 for perfectly elastic collision.
It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres. [2]
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
The Poisson's ratio of a stable, isotropic, linear elastic material must be between −1.0 and +0.5 because of the requirement for Young's modulus, the shear modulus and bulk modulus to have positive values. [3] Most materials have Poisson's ratio values ranging between 0.0 and 0.5.