Search results
Results From The WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...
These include: as noted above, computing all expressions and intermediate results in the highest precision supported in hardware (a common rule of thumb is to carry twice the precision of the desired result, i.e. compute in double precision for a final single-precision result, or in double extended or quad precision for up to double-precision ...
The advantage over 8-bit or 16-bit integers is that the increased dynamic range allows for more detail to be preserved in highlights and shadows for images, and avoids gamma correction. The advantage over 32-bit single-precision floating point is that it requires half the storage and bandwidth (at the expense of precision and range). [5]
The standard type hierarchy of Python 3. In computer science and computer programming, a data type (or simply type) is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. [1]
On some PowerPC systems, [11] long double is implemented as a double-double arithmetic, where a long double value is regarded as the exact sum of two double-precision values, giving at least a 106-bit precision; with such a format, the long double type does not conform to the IEEE floating-point standard.
The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits, [4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10 308 for double-double versus 1.2 × 10 4932 for binary128).