Search results
Results From The WOW.Com Content Network
Some very heavily optimized pipelines have yielded speed increases of several hundred times the original CPU-based pipeline on one high-use task. A simple example would be a GPU program that collects data about average lighting values as it renders some view from either a camera or a computer graphics program back to the main program on the CPU ...
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
When it was first introduced, the name was an acronym for Compute Unified Device Architecture, [4] but Nvidia later dropped the common use of the acronym and now rarely expands it. [5] CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [6]
Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. [7] [8] [9] As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and ...
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...
Individual machine languages are specific to a family of processors; machine-language code for one family of processors cannot run directly on processors in another family unless the processors in question have additional hardware to support it (for example, DEC VAX processors included a PDP-11 compatibility mode).
The number of threads in a block is limited, but grids can be used for computations that require a large number of thread blocks to operate in parallel and to use all available multiprocessors. CUDA is a parallel computing platform and programming model that higher level languages can use to exploit parallelism.