Search results
Results From The WOW.Com Content Network
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
Tschirnhausen cubic; Witch of Agnesi; Degree 4. Quartic plane curves include Ampersand curve; ... Cardiac function curve; Dose–response curve; Growth curve (biology)
The Darboux cubic is the locus of a point X such that X* is on the line LX, where L is the de Longchamps point. Also, this cubic is the locus of X such that the pedal triangle of X is the cevian triangle of some point (which lies on the Lucas cubic).
The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as (−n) 3 = −(n 3).
The derivative of a quartic function is a cubic function. Sometimes the term biquadratic is used instead of quartic, but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form
A central feature of smooth cubic surfaces X over an algebraically closed field is that they are all rational, as shown by Alfred Clebsch in 1866. [1] That is, there is a one-to-one correspondence defined by rational functions between the projective plane minus a lower-dimensional subset and X minus a lower-dimensional subset.