When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Visual proof cone volume.svg - Wikipedia

    en.wikipedia.org/wiki/File:Visual_proof_cone...

    visual proof cone volume: Image title: Proof without words that the volume of a cone is a third of a cylinder of equal diameter and height by CMG Lee. 1. A cone and a cylinder have radius r and height h. 2. Their volume ratio is maintained when the height is scaled to h' = r √Π. 3. The cone is decomposed into thin slices. 4.

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space R n {\displaystyle \mathbb {R} ^{n}} is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a , the vector ax is in C . [ 2 ]

  4. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    According to the above definition, if C is a convex cone, then C ∪ {0} is a convex cone, too. A convex cone is said to be pointed if 0 is in C, and blunt if 0 is not in C. [2] [21] Blunt cones can be excluded from the definition of convex cone by substituting "non-negative" for "positive" in the condition of α, β.

  5. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    Hyperboloid of one sheet. Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). [1] A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior.

  6. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    Proposition 11: The volume of a cone (or cylinder) of the same height is proportional to the area of the base. [6] Proposition 12: The volume of a cone (or cylinder) that is similar to another is proportional to the cube of the ratio of the diameters of the bases. [7] Proposition 18: The volume of a sphere is proportional to the cube of its ...

  7. Cone (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Cone_(algebraic_geometry)

    In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X , the relative Spec C = Spec X ⁡ R {\displaystyle C=\operatorname {Spec} _{X}R}

  8. Dual cone and polar cone - Wikipedia

    en.wikipedia.org/wiki/Dual_cone_and_polar_cone

    A cone C in a vector space X is said to be self-dual if X can be equipped with an inner product ⋅,⋅ such that the internal dual cone relative to this inner product is equal to C. [3] Those authors who define the dual cone as the internal dual cone in a real Hilbert space usually say that a cone is self-dual if it is equal to its internal dual.

  9. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...